6 research outputs found

    A Risk-Based Decision Support System for Failure Management in Water Distribution Networks

    Get PDF
    The operational management of Water Distribution Systems (WDS), particularly under failure conditions when the behaviour of a WDS is not well understood, is a challenging problem. The research presented in this thesis describes the development of a methodology for risk-based diagnostics of failures in WDS and its application in a near real-time Decision Support System (DSS) for WDS’ operation. In this thesis, the use of evidential reasoning to estimate the likely location of a burst pipe within a WDS by combining outputs of several models is investigated. A novel Dempster-Shafer model is developed, which fuses evidence provided by a pipe burst prediction model, a customer contact model and a hydraulic model to increase confidence in correctly locating a burst pipe. A new impact model, based on a pressure driven hydraulic solver coupled with a Geographic Information System (GIS) to capture the adverse effects of failures from an operational perspective, is created. A set of Key Performance Indicators used to quantify impact, are aggregated according to the preferences of a Decision Maker (DM) using the Multi-Attribute Value Theory. The potential of distributed computing to deliver a near real-time performance of computationally expensive impact assessment is explored. A novel methodology to prioritise alarms (i.e., detected abnormal flow events) in a WDS is proposed. The relative significance of an alarm is expressed using a measure of an overall risk represented by a set of all potential incidents (e.g., pipe bursts), which might have caused it. The DM’s attitude towards risk is taken into account during the aggregation process. The implementation of the main constituents of the proposed risk-based pipe burst diagnostics methodology, which forms a key component of the aforementioned DSS prototype, are tested on a number of real life and semi-real case studies. The methodology has the potential to enable more informed decisions to be made in the near real-time failure management in WDS

    A DSS generator for multiobjective optimisation of spreadsheet-based models

    Get PDF
    Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software Vol. 26 (2011), DOI: 10.1016/j.envsoft.2010.11.004Water management practice has benefited from the development of model-driven Decision Support Systems (DSS), and in particular those that combine simulation with single or multiple-objective optimisation tools. However, there are many performance, acceptance and adoption problems with these decision support tools caused mainly by misunderstandings between the communities of system developers and users. This paper presents a general-purpose decision-support system generator, GANetXL, for developing specific applications that require multiobjective optimisation of spreadsheet-based models. The system is developed as an Excel add-in that provides easy access to evolutionary multiobjective optimisation algorithms to non-specialists by incorporating an intuitive interactive graphical user interface that allows easy creation of specific decision-support applications. GANetXL’s utility is demonstrated on two examples from water engineering practice, a simple water supply reservoir operation model with two objectives and a large combinatorial optimisation problem of pump scheduling in water distribution systems. The two examples show how GANetXL goes a long way toward closing the gap between the achievements in optimisation technology and the successful use of DSS in practice.Engineering and Physical Sciences Research Council (EPSRC

    Pipe burst diagnostics using evidence theory

    Get PDF
    Copyright © IWA Publishing 2011.The definitive peer-reviewed and edited version of this article is published in Journal of Hydroinformatics Volume 13 Issue 4, pp. 596–608 (2011), DOI: 10.2166/hydro.2010.201 and is available at www.iwapublishing.com.This paper presents a decision support methodology aimed at assisting Water Distribution System (WDS) operators in the timely location of pipe bursts. This will enable them to react more systematically and promptly. The information gathered from various data sources to help locate where a pipe burst might have occurred is frequently conflicting and imperfect. The methodology developed in this paper deals effectively with such information sources. The raw data collected in the field is first processed by means of several models, namely the pipe burst prediction model, the hydraulic model and the customer contacts model. The Dempster–Shafer Theory of Evidence is then used to combine the outputs of these models with the aim of increasing the certainty of determining the location of a pipe burst within a WDS. This new methodology has been applied to several semi-real case studies. The results obtained demonstrate that the method shows potential for locating the area of a pipe burst by capturing the varying credibility of the individual models based on their historical performance

    Intelligent urban water infrastructure management

    Get PDF
    Copyright © 2013 Indian Institute of ScienceUrban population growth together with other pressures, such as climate change, create enormous challenges to provision of urban infrastructure services, including gas, electricity, transport, water, etc. Smartgrid technology is viewed as the way forward to ensure that infrastructure networks are fl exible, accessible, reliable and economical. “Intelligent water networks” take advantage of the latest information and communication technologies to gather and act on information to minimise waste and deliver more sustainable water services. The effective management of water distribution, urban drainage and sewerage infrastructure is likely to require increasingly sophisticated computational techniques to keep pace with the level of data that is collected from measurement instruments in the field. This paper describes two examples of intelligent systems developed to utilise this increasingly available real-time sensed information in the urban water environment. The first deals with the failure-management decision-support system for water distribution networks, NEPTUNE, that takes advantage of intelligent computational methods and tools applied to near real-time logger data providing pressures, flows and tank levels at selected points throughout the system. The second, called RAPIDS, deals with urban drainage systems and the utilisation of rainfall data to predict flooding of urban areas in near real-time. The two systems have the potential to provide early warning and scenario testing for decision makers within reasonable time, this being a key requirement of such systems. Computational methods that require hours or days to run will not be able to keep pace with fast-changing situations such as pipe bursts or manhole flooding and thus the systems developed are able to react in close to real time.Engineering and Physical Sciences Research CouncilUK Water Industry ResearchYorkshire Wate

    Regional Differentiation of Long-Term Land Use Changes: A Case Study of Czechia

    No full text
    The major topic of this article is the evaluation of the regional differentiation of the long-term changes in land use in Czechia. This study searches the spatial and temporal differentiation of the changes and their driving forces since the 19th century. The comprehensive land use land cover change database (LUCC Czechia Database) which comprises cadastral data on the land use in the years 1845, 1896, 1948, 1990, 2000, and 2010 for more than 8000 units, was the main data source. The chief benefit of this article can be seen in the methodical procedures of the application of the “Rate of heterogeneity” (H) derived from the Gini coefficient in the research of the differentiation/inequality of the long-term land use change. GIS modeling tools were used to calculate the selected geographical characteristics (altitude and slope) of the examined units for the purpose of searching the factors of the land use changes. The results show a strong trend in the differentiation of the long-term land use changes. Two main antagonistic processes took place in the land use structure during the observed period of 1845–2010. The fertile regions experienced agricultural intensification with the concentration of the arable land in these regions. On the other hand, the infertile regions experienced extensification, accompanied by afforestation and grass planting during the last decades. The influence of natural conditions (altitude and slope) on the distribution of the land use has been growing—the arable land has been concentrated into the lower altitudes and, more significantly, into less steep areas. Grasslands and forests predominantly occupy the less favored areas with higher altitudes and steeper slopes. The built-up areas have been strongly concentrated and regionally polarized. In 1845, half of the Czech built-up areas were concentrated in 31% of the total country area, whereas in 2010, it was in 21%
    corecore